Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(3,4-dimethoxybenzylidene)ethylenediamine

Yu-Guang Li, ${ }^{\text {a,b }}$ Hai-Liang Zhu, ${ }^{\text {a }}{ }^{*}$ Xin-Zhi Chen, ${ }^{\text {a }}$ Yun-Chuan Xin ${ }^{\text {a }}$ and Yan-Hu Zhu ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073,
People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.056$
$w R$ factor $=0.152$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, has crystallographic inversion symmetry. In the crystal structure, the molecules are linked via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional structure.

Comment

Ethylenediamine and its derivatives play an important role in developing molecular architectures in coordination chemistry (Brown et al., 2001; Dapporto et al., 2000). Similarly, the condensation products of ethylenediamine with aldehydes, i.e. Schiff bases, form an interesting class of ligands for transition metal complexes (Goswami \& Eichhorn, 1999; Henson et al., 1999). Recently, we have reported a Schiff base compound derived from the condensation of ethylenediamine with 2nitrobenzaldehyde, which has been structurally characterized (Li et al., 2005). As an extension of this work, the crystal structure of the title compound, (I), has been determined.

(I)

In (I) (Fig. 1), two 3,4-dimethoxybenzylidene groups are bridged by the ethylenediamine fragment via two $\mathrm{C}=\mathrm{N}$ double bonds in a roughly linear geometry. The torsion angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 9-\mathrm{N} 1$ of $172.34(15)^{\circ}$ indicates an extended configuration. The molecule is disposed about a centre of inversion at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The $\mathrm{C} 9=\mathrm{N} 1$ bond length of $1.260(2) \AA$ is comparable to the corresponding values of 1.250 (2) \AA observed in bis(2 -nitrobenzaldehyde)ethylenediamine (Li et al., 2005). All other bond lengths are within normal ranges (Allen et al., 1987).
In the crystal packing, the molecules are linked via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a threedimensional structure (Table 1 and Fig. 2).

The structure of centrosymmetric (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry code ($1-x, 2-y, 1-z$).

Received 12 December 2005
Accepted 16 January 2006

Experimental

Ethylenediamine ($1 \mathrm{mmol}, 60 \mathrm{mg}$) and 3,4-dimethoxybenzaldehyde $(2 \mathrm{mmol}, 332 \mathrm{mg})$ were dissolved in methanol $(10 \mathrm{ml})$ at 323 K . The mixture was stirred for 10 min to give a clear and colourless solution. After the solution had been allowed to stand in air for 8 d , colourless crystals formed, in about 87% yield, on slow evaporation of the solvent. Analysis found: C 67.35, H 6.91, N 7.85\%; $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C 67.39 , H 6.79, N 7.86\%.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=356.41$
Monoclinic, $P 2_{1} / c$
$a=13.126(3) \AA$
$b=8.531(2) \AA$
$c=8.393(2) \AA$
$\beta=97.125(4)^{\circ}$
$V=932.6(4) \AA^{3}$
$Z=2$
$D_{x}=1.269 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2443 reflections
$\theta=2.7-23.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.897, T_{\text {max }}=0.995$
10357 measured reflections

2111 independent reflections
1415 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.142$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.152$
$S=0.94$
2111 reflections
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0823 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{i}}$	0.96	2.56	$3.490(2)$	164
$\mathrm{C}^{2}-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.96	2.57	$3.521(2)$	171

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x,-y+1,-z$.
The H atoms were included in calculated positions and refined using a riding-model approximation, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and methylene, and $1.5 U_{\text {eq }}(\mathrm{C})$ for

Figure 2
The crystal packing of (I), viewed along the b axis. Dashed lines show intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
methyl H atoms. The high value of R_{int} is due to the weak precision of single-crystal reflection data.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

We thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, the State Education Ministry, and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brown, D. A., Errington, W., Glass, W. K., Haase, W., Kemp, T. J., Nimir, H., Ostrovsky, S. M. \& Werner, R. (2001). Inorg. Chem. 40, 5962-5971.
Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dapporto, P., Formica, M., Fusi, V., Micheloni, M., Paoli, P., Pontellini, R., Romani, P. \& Rossi, P. (2000). Inorg. Chem. 39, 2156-2163.
Goswami, N. \& Eichhorn, D. M. (1999). Inorg. Chem. 38, 4329-4333.
Henson, N. J., Hay, P. J. \& Redondo, A. (1999). Inorg. Chem. 38, 1618-1626.
Li, Y.-G., Zhu, H.-L., Chen, X.-Z. \& Song, Y. (2005). Acta Cryst. E61, $04156-$ o4157.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

